
Using a RESTful messaging and registry system
to support a range a distributed applications

Mark Baker, Garry Smith, Matthew Grove, Rahim Lakhoo, Hugo Mills, and Carl Albing,

School of Systems Engineering, University of Reading, Reading, UK
e-mail: mark.baker@computer.org

Abstract — Tycho was conceived in 2003 in response
to a need by the GridRM [1] resource-monitoring project
for a “light-weight”, scalable and easy to use wide-area
distributed registry and messaging system. Since Tycho’s
first release in 2006 a number of modifications have been
made to the system to make it easier to use and more
flexible. Since its inception, Tycho has been utilised
across a number of application domains including wide-
area resource monitoring, distributed queries across
archival databases, providing services for the nodes of a
Cray supercomputer, and as a system for transferring
multi-terabyte scientific datasets across the Internet. This
paper provides an overview of the initial Tycho system,
describes a number of applications that utilise Tycho,
discusses a number of new utilities, and how the Tycho
infrastructure has evolved in response to experience of
building applications with it.

Keywords- RESTful, HTTP, PUT/GET, Transactions,

Web 2.0

I. INTRODUCTION
The Tycho [2] project’s focus is on the design and
development of a system for binding together distributed
applications with the aid of a combined messaging and
registry system. Tycho provides application developers
with a means of securely integrating distributed systems
using a single software package. One aim is to simplify
the process of assembling distributed applications by
reducing the number of libraries or tools required by the
application developer. A second aim is to produce a
system that is more scalable and has higher performance
than the combinations of registry and messaging software
previously available.

Tycho’s architecture is shown in Figure 1, and is
described here [3]. Tycho has a service oriented
architecture, and it main components are:
• Mediators allow producers and consumers to discover

each other and establish remote communications.
• Consumers typically subscribe to receive information

or events from producers.
• Producers gather and publish information for

consumers.

The design philosophy for Tycho was to keep its core
relatively small, simple and efficient, so that it has a
minimal memory foot-print, is easy to install, and is
capable of providing robust and reliable services. More

sophisticated services can then be built on this core and are
provided via libraries and tools to applications. This
enables Tycho to be flexible and extensible so that it will
be possible to incorporate additional features and
functionality.

In Tycho, producers and/or consumers publish their

existence in a directory service known as the Virtual
Registry (VR). A client uses the VR to locate other clients,
which act as a source or sink for the data they are
interested in. The VR is a distributed peer-to-peer service
provided by the network of mediators. Normally clients
communicate directly, however, for clients that do not
have direct access to the Internet, the mediator provides
wide-area connectivity by acting as a gateway or proxy
into a localised Tycho installation. The Tycho VR is made
up of a collection of services that provides the
management of client information and facilitates locating
and querying remote Tycho installations. A consumer
(client) registers with a local mediator, part of the VR,
when it starts-up. The VR provides a locally unique name
for each client and periodically checks registered entities to
ensure their liveliness, removing stale entries if necessary.
Tycho’s architecture is designed to support both
encryption and access control to provide a secure
environment. Encryption is provided at the transport
handler level using SSL to encrypt messages sent via the
HTTP and Socket handlers.

II. TYCHO IMPLEMENTATION
Tycho’s implementation is based on REST [4] in order

to provide standardised services without the need to follow
long and complicated Web Services or Grid standards that
were and are constantly in flux. Tycho was designed to be
easy to deploy and as a result only requires an installed
Java Virtual Machine (JVM) in order to execute the single
Java JAR file that consists of the complete Tycho

Figure 1: Tycho's Architecture

2009 Eighth International Symposium on Parallel and Distributed Computing

978-0-7695-3680-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ISPDC.2009.17

187

download (all Tycho dependencies such as the mediator’s
internal database and communications libraries for the VR
are included within this file).

Tycho was intentionally designed around a minimal
core that only provides essential services. The idea is that
the core should be fast and unencumbered by features that
are not essential to Tycho’s roles as a distributed registry
and messaging system. This approach differs from the
method used by other middleware such as
NaradaBrokering (NB) [5] and the Globus Monitoring and
Discovery System [7] where new functionality is typically
added to the core implementation. In Tycho, new
functionality is packaged as optional utilities that sit above
the core services.

Since synchronous communications typically have a

higher overhead than asynchronous (due to the need to
track messages and the time spent blocking and waiting for
responses) a decision was made early in Tycho’s
development that its core should only support
asynchronous communication patterns. This means that
applications must either be written following an
asynchronous programming model, or utilise a higher-level
blocking API potentially implemented as a Tycho utility.

Here we briefly describe the main methods of the

Client API:
• Class TychoConnector: provides the core client

functionality. It contains fourteen methods that
provide a high-level API for the Tycho functionality.
The API handles interaction with other clients and the
Tycho mediator transparently. For example, to
perform a distributed Tycho query across the entire
VR a single method is used with one parameter.

• Class EmbeddedMediator: starts an instance of a
Tycho mediator within the same JVM as the client. It
provides an additional three methods to retrieve
settings from the mediator (such as its URL) and
allows the verbosity of the debug output to be set.

• Class Message: contains fourteen methods for
manipulating Tycho messages. It provides a high-
level interface for users to read and alter parts of a
binary message without having to directly manipulate
the binary data.

• Finally a single Java interface is provided - Interface
IeventInterface: defines five methods that are
implemented by all Tycho clients. It allows
asynchronous messages to be delivered to the client.

Tycho provides a plug-in mechanism that allows

different technologies to be used for the VR
communications. The reference implementation provided
HTTPS and Internet Relay Chat (IRC) [8] support. IRC
networks provide a communications overlay that is
configured to provide fault tolerant messaging. Tycho
allows applications developers to make use of this existing
Internet infrastructure without the need to deploy their own
messaging services, daemons, or even change the
configuration of Tycho from the default options.

When using a distributed registry to store data for an
application, one task is to configure the registry to handle
the necessary data. To configure Globus MDS and the
Relational Grid Monitoring Architecture (R-GMA) [9] to
accept user-defined application specific data, all instances
of R-GMA or MDS must be configured with the same data
schema. In contrast, Tycho allows the clients to
dynamically describe the data they publish into the VR by
using the schema field, which means that VRs do not need
to be reconfigured. Both the automatic configuration and
the ability to dynamically publish ad-hoc information into
the VR, this reduces the administrative overheads of
deploying and using Tycho, compared to these other
systems.

Unlike related systems, such as NB, MDS, R-GMA,

Jini [10] and Apache Axis [11], Tycho is distributed with
security enabled by default and does not require the
developer to install additional packages. The reference
implementation of Tycho supports transport-level
encryption using HTTPS and access control (using MD5
hashes), which prevents access to the Virtual Registry.
Furthermore, these systems have multiple software
dependencies that must be satisfied as part of the
installation process; Tycho on the other hand only requires
a JVM to operate.

Related systems require some manual configuration

before they could be bootstrapped. They also need
additional effort to arrange their components into a
scalable hierarchy. The Tycho mediator automatically
discovers and connects to other Tycho instances by using
the bootstrapping functionality of the Virtual Registry
(VR)-interconnects.

Various performance tests have been made to

measured registry’s performance and capability of Tycho,
against MDS, and R-GMA. This revealed that Tycho had
better performance than the other systems. During these
tests the other systems failed due to memory management
issues. As part of a peer-to-peer file-sharing test, Tycho
successfully transferred files of up to 80 Gbytes to 60
peers.

III. TYCHO UTILITIES AND APPLICATIONS

Since Tycho was first released, a number of updates to
the software have been made to make it more functional,
so that it can support a greater number of distributed
applications. This section first briefly describes the range
of applications that use Tycho, and then we discuss
extensions to Tycho that have been made to better support
a range of applications.

A. XDB

The UK JISC-funded VERA project [12] is
investigating the development of a virtual environment for
research in archaeology. The project is based around the
archaeological excavation of Silchester, a Roman town
that was abandoned in the fifth century. The excavation
has been running for 12 years, and has accumulated a large

188

database of information, stored in the IADB (Integrated
Archaeological Database). One challenge within the
project was to provide integrated search facilities across
multiple archival databases. The test system searches for
records from the Silchester IADB, held in an ordinary
relational database, and a classics-oriented collection of
Roman-era inscriptions found in Vindolanda database [13],
which is based on a RDF store. The cross-database search
engine, XDB [14], see Figure 2, was developed to
investigate some of the issues arising from searching
across multiple and highly disparate databases.

Figure 2: The XDB Architecture

B. DNWay

The DNway project is attempting to create a generic
framework that uses a master-worker paradigm to
distribute work (idempotent tasks) across the
computational resources of very large supercomputers and
clusters. DNway, shown in Figure 3, provides immediate,
not queued, access to compute cycles and therefore must
be:
• Adaptable - using processors and networks of varying

speed,
• Robust - adapt to changing response times, including

the failure of remote workers,
• Accessible through firewalls;
• Able to cope with different network topographies.

In order to use DNway, the “work units” that are to be

distributed must be defined, and the logic that will be used
to process each unit of work must be written. Resource
discovery, work distribution, result delivery, timeouts, and
retry mechanisms are built on top of Tycho.

Figure 3: The DNway Architecture

C. Necho

The Necho project [15] is creating a multi-tiered peer-
to-peer system, which is akin to BitTorrent, for distributing
multi-terabyte scientific datasets across the Internet. The
concepts for this project first appeared when working with
the Sloan Digital Sky Survey [16], where it was necessary
to split the original dataset up and use a modified version
of WGET [17] to download and update the database.

The Necho architecture, shown in Figure 4, consists of
a hierarchical Peer-to-Peer (P2P) system that is based
around shared-portal services and unique peers donated by
participating individuals and organisations. The goal of the
project is to combine P2P, volunteer computing and social
networks to provide a way to distribute, contribute to, and
manage very large datasets. Necho uses Tycho to
distribute, index and retrieve chunks of data that comprise
each overall dataset. We are currently testing Necho
against other BitTorrent systems, such as Azureus [18],
and our single tier version of Necho is proving to be much
faster.

Figure 4: A Schematic of the Necho Architecture

D. VOTechBroker

The VOTechBroker (VOTB) [18] is a system for
submitting parameter sweeps to the Grid, and other
distributed resources, in a transparent way. The VOTB
aims to interoperate with a wide range of job submission
systems using a plug-in component, and to protect the user
from middleware details (see Figure 5).

189

A key aim of the VOTB is to support an extensible

range of (Grid) middleware, hide heterogeneity, and ease
the complexity associated with job submission/execution.
Tycho is used to dynamically locate available
computational resources at remote sites that were
appropriate to a particular user’s requirements (e.g. with
appropriate CPU architecture, libraries and services
installed, account authorisation, availability, not over
loaded, and sufficient free memory).

E. GridRM

GridRM [20] is an extensible, wide-area, monitoring

system that specialises in combining data from existing
agents and monitoring systems so that a consistent view of
the underlying resources and services can be achieved,
regardless of heterogeneity. Gateways (see Figure 6)
provide access to local resource information at each site.
Clients connect to gateways to perform resource queries
and to subscribe for events. GridRM uses Tycho in a
number of ways to bind together clients and Gateways for
wide-area communications, and to provide the basis of an
event mechanism (both wide-area events to clients, and
events from local monitoring).

Figure 6: The GridRM Architecture

F. SORMA

In the SORMA (Self-Organizing ICT Resource

Management) project, an Economically Enhanced
Resource Manager (EERM) [21] exists at each resource
provider’s site, and acts as a centralised resource allocator
that orchestrates business goals and resource requirements
in order to achieve maximum economic profit and resource
utilisation. The EERM’s main duties (see Figure 7) include
resource management, monitoring and providing
standardised interfaces to resource fabrics for use from
applications.

Figure 7: The SORMA EERM Architecture

The EERM utilises GridRM to obtain resource

information for system and per-process monitoring in
order to determine if Service Level Agreements (SLAs)
have been violated. The EERM is composed as a
confederation of loosely bound components for scalability
and availability reasons. Tycho provides messaging and
event mechanisms.

G. Slogger

Slogger [22] utilises various emerging Semantic Web

technologies to gather data from heterogeneous log files
generated by the various layers in a distributed system and
unify them in common data store. The logs are ones
generated by the operating system, middleware (e.g.
Apache Tomcat or MPI) and applications themselves).
Once unified, the log data can be queried and visualised in
order to highlight potential problems or issues that may be
occurring in the supporting software or the application
itself. Slogger uses Tycho (see Figure 8) to first process,
e.g. determine what data is need from the logs, and then
gather data from the distributed resources and push this
into a centralised RDF store. Once the data is in the store
SPARQL queries are issued in order analyse the RDF log
data in order to identify problem and errors in the software
executing over the distributed resources.

Figure 5: The VOTechBroker Architecture

190

Figure 8: The Slogger Framework

H. Map Service

Geographical maps are used to describe the Earth’s

surface and its contours. These maps are hosted on servers
called “map servers” [23] around the globe and can be
used by scientists in many ways. For example, to find the
temperature of specific area, examine the wind pressure of
particular place or study the state of oceans around the
world. The environmental science community lacks a
searchable registry of available Map Services. As a result,
scientists cannot discover the data that may be most
valuable for their work or they may spend a lot of time
searching for the right data. Most of the time, the
scientists manage to find the service, but this may be
problematic and does not give access to data needed.

The Web contains a large number of valuable
environmental datasets hosted on map servers. These
datasets follow different specifications such as the Open
Geospatial Consortium (OGC) Web Map Service. Users
access these datasets to retrieve maps of desired
functionality. The demand for maps has increased in recent
years, especially with the environmental science
community, who are facing difficulties in finding the right
map service. As a result, scientists cannot discover the data
that may be useful for their research work. Often, even if
the scientist finds the correct map service, the service can
be unreliable and fails to provide the required data. In this
project, we have developed a framework that provides a
searchable database for map services.

Figure 9 shows the overall framework of the Map Service.
This project uses Tycho to search for map services, and
find those that are most appropriate, based on the search

data initiated by the user. A remote producer gathers
keywords and metadata from each map server, and stores
this into the VR; this data is collocated with the location of
the server itself. When a user wants to find map data, it
sends a query via a consumer that is embedded into a Web
browser; the query uses the OGC standards. The query is
sent off, and first searches though the VR to find matching
metadata or keywords, once this has been established, then
the full OGC query is sent to the matching map server. The
map server will then return the appropriate map to the
client were it is displayed for the user.

I. Web 2.0 and Portlets

Tycho has been used with JSR-168 portlets in GridRM

and SORMA. Furthermore, Web 2.0 interfaces that use
Tycho to provide data to sliders have been implemented.
JSR-168 portlets provide an opportunity to create user
interfaces that are portable across different portal
containers. We have created a number of JSR-168 portlets
so that clients can remotely administer gateways and query
resources from a Web browser. The portlets are currently
hosted in a Gridsphere portal [31] and provide a modular
approach for building a user interface; each portlet
provides one type of functionality, and multiple portlets
are combined (in the portal container) in order to provide
the overall user interface. The portlets are categorised as
those for performing gateway administration and those for
querying resources and subscribing/receiving events. The
portlets all utilise the client monitoring API (as a portlet
service), which they use to communicate with gateways
over the Global Layer. The front ends of the portlets are
constructed using Java Server Pages (JSPs) that present
XHTML controls and data to the client.

Figure 10: The Structure of the Web 2.0 Interface

Although events are passed to the portlet code (via the

monitoring API) in real-time, AJAX is required to refresh
data in the portlet JSPs, so that events propagate to the user
asynchronously. Alternatively the user is required to
interact with the portlet user interface in order to be
notified of new event data (e.g. by causing the portlet to
enter its doView mode). The structure of the Web 2.0
interface is shown on Figure 10.

Web 2.0 mashups provide an alternative way of

displaying monitoring data. We have experimented with
Web 2.0 to produce an interface that contains:

Figure 9: The Map Service Framework

191

• Charts and gauges that display monitoring data
dynamically in near real-time, for multiple resources
registered with a gateway,

• A map that represents gateways according to their
geographical location and displays their metadata,
e.g. status, registered drivers, administrator
information and network links between remote sites.

• A registry browser, that displays entries from Tycho’s
distributed registry in a graph and allows users to
expand and collapse nodes as they browse registry
meta data – this feature is useful to system developers
and administrators.

It was interesting to compare and contrast the use of

Flash-based Web 2.0 tools versus those based on simple
technologies, which were less intrusive. We found that the
Flash-based system contained a memory leak and would
repeatedly crash the Web browser. Plus it was clear, even
if the memory leak was solved, that if there were hundreds
of resources being monitored, huge amount of CPU and
memory would be used to monitor these resources.

As an alternative we looked at using simple slider
icons, as shown in Figure 11, these were based on
JavaScript and Cascading Style Sheets (CSS); they used
small amount of memory and CPU, and could monitor
hundreds of resource without being too intrusive.

IV. TYCHO UTILITIES

Utilities are software components that give the Tycho
infrastructure greater functionality so that it can more
robustly and reliably support distributed applications. In
this section we describe some of the utilities that have been
created.

A. Synchronous Monitoring API

By default, Tycho provides asynchronous messaging,
however, many applications, such as the GridRM client
requires a mix of blocking calls (e.g. for resource queries)
and non-blocking calls (e.g. for event notifications). To
achieve this we have created a Tycho utility to provide
blocking communication operations. The Tycho method

used by a client to transmit data is non-blocking and
returns a unique message ID, which is used to key the
semaphore into a hash table. When a message arrives at the
client, the Tycho event handler passes the message content
to a method that matches the response to a request ID and
performs a lookup in the hash table. If a match is found, a
release is called on the semaphore and the blocked call
continues. If a match is not found then the Tycho message
is converted into an event of a given type and sent to the
client’s event listener. If the client has not subscribed to
receive events of the given type, then the event is silently
dropped.

A client API based on Tycho has been created that

consists of seventeen calls for performing common
operations such as:
• Registering and un-registering interest in receiving

events from particular gateways and resources,
• Registering, un-registering and listing registered

resources within a particular gateway,
• Querying “core” attribute values (e.g. memory

utilisation, and system load),
• Controlling “resource watches”, whereby a gateway

is instructed to periodically capture resource data,
which it saves to its internal database for later
inspection,

• Controlling “job watches”, whereby a gateway
instructs a capable agent to monitor process resource
utilisation at defined intervals. The gateway retrieves
data from the agent and stores it in an internal
database for later inspection.

B. HTTP pipelining

Currently every message sent by Tycho is via a
separate HTTP message. In order to optimise the
communication performance of Tycho, it requires us to
open multiple parallel HTTP pipes, with buffering, when
sending data to a remote destination, instead of reopening
the single HTTP pipe every time. This project is still
underway, but effectively provides the same functionality
as GlobusFTP [5]. The system being developed has one
HTTP control channel, and “N” parallel HTTP channels
that are used to send data between Tycho components.

C. Lightweight Transactions

This project intends to create lightweight transactions
via the Tycho system so that events sent around the system
will be reliable and recoverability in case a failure occurs.
Although transactions are valuable and provide atomicity,
persistency, and recoverability, they are not widely used in
programming environments today, due to their high
overheads that have been driven by the latency of saving
data to disks. A major challenge in transaction-based
systems is to remove disk usage from the critical path of
transactions. In this project, so called “lightweight
transactions” will be created. Here there will be a
transaction manager, which uses main memory that
decouples the performance of transactions from the disk.

Figure 11: Slider Icons - Using JavaScript and CSS

192

Figure 12: The RESTful Transaction System

Figure 12 shows the RESTful transaction framework

embedded in Tycho, where the Transaction Coordinator is
embedded inside the Tycho Mediator. In this case
Resource Managers and a Transaction Initiator could be
with either the Producer or Consumer. They are connected
to a Tycho Mediator and thus automatically connected to
the Transaction Coordinator. The Mediator manages
transactions along with the core functionality of the Tycho
system and returns the result to the Transaction Initiator.
Implementing the Transaction Coordinator inside the
Tycho Mediator creates additional functionality to the core
of the system, but results in slower performance. However,
it allows logging in the internal Mediator database and as a
result having Log service and Transaction Coordinator in
one node in the system, which creates better persistence of
messages.

Once a distributed system maintains lightweight
transactions, it can be used for various applications, such
as computational steering or supporting events, when it is
imperative to guarantee that a remote component receives
the event. Principally, whenever an application is using
multiple transactional, persistent resources, it may need
distributed transactions.

D. Added VR Functionality

Our experience using Tycho’s VR with various

applications has shown us that it necessary to add greater
functionality to it. The original VR was designed to store
the URLs of end points (producers or consumers) and also
hold various XML documents that contained useful
metadata related to the end-points.

One extension for Tycho that came out of the XDB

work is a results store, which manages the handling of
query results from this interaction method in a thread-safe
way. It does so by keeping track independently of results,
which were "expected", and results, which were not. When
the results store is told of a message ID that has been sent,
it checks the set of "unexpected" results, and matches up
the ID with any result that may have come in.

The other obvious drawback of using Tycho for the

XDB system is the limited storage space and search
capability within the Tycho registry. Extending the registry
to support arbitrary data tables (e.g. as in Necho) would
make the implementation of the XDB's "master index"
functionality much easier. Going even further than that,
implementing storage of RDF [29] metadata within the
registry, and searching through that distributed metadata
using SPARQL [30] would be highly useful too. It is not
immediately obvious how a full SPARQL implementation

would work to find RDF fragments split across several
mediators' registry stores, but even being able to search
within each mediator's store for matching fragments could
offer significant benefits to the XDB.

E. Additional Caching

One way to further improve performance is altering
caching in the mediator to include local data-store queries
in addition to remote responses. Adding indexing to the
simple store would improve its performance when
searching for records. In addition, the message-passing
performance could be improved by changing the socket
transport handler to use thread pooling to further reduce
the cost of sending messages.

V. SUMMARY AND CONCLUSIONS

Tycho is a RESTful asynchronous messaging system
with an integrated peer-to-peer virtual registry. Since,
Tycho was first released at the end of 2006, we have
increasingly used the system to support a range of
distributed applications. We have used Tycho, rather than
other systems, such as the Grid, because the RESTful
services provided are easy to install and use. In addition,
since Tycho was first designed, the overall standards used
have not changed. Tycho uses HTTP (HTTPS) and
Sockets (SSL) for communications. Internally, it uses SQL
as the query language and uses LDAP LDIF to mark up
responses from the VR. None of these standards have
changed, and it ensures that applications, based on Tycho,
will continue to work for the foreseeable future.

Tycho’s core is stable, but as we have pointed out in

this paper, there are a number of features that need
implementing to better support a wider range of
applications. Some of the additional functionality needed
by Tycho can be implemented by creating utilities and
services on top of its generic API. An example of this is
the Synchronous Monitoring API described earlier.

A. Future Work

A project is underway to develop the appropriate

hardware and software to support remote monitoring of the
environment via wireless sensor networks [27]. The
project is using Sun SPOTs [28], which are small hardware
platforms, battery operated, with a wireless device running
the Squawk Java Virtual Machine (VM) without an
underlying OS. This VM acts as both operating system and
software application platform. We have been investigating
the current software used, and we feel that using a Tycho
producer/mediator on SPOT, and using HTPP
communication will make the overall network more
reliable and easier to program. For example, when the
network starts up, each SPOT will gather data about all the
SPOTs in the network. This information will be shown in
the mediator and be used to calculate the optimal route to
send result data back to the base station, and also, if there
is a SPOT failure, it will be possible to calculate
alternative routes back the base station.

193

Another project that we are considering is creating a
system that provides “service mashups”. Here Tycho
components will be created, based on producers and
consumers, which are registered in the VR. We will then
build a graphical interface that can be used to discover and
orchestra the components together. An example of a useful
service mashup could be some type of workflow system,
where the various Tycho components would include parts
of a workflow and they can be put together in a pipeline.

VI. REFERENCES
[1] GridRM, http://gridrm.org
[2] Tycho, http://acet.rdg.ac.uk/projects/tycho/
[3] M.A. Baker, and Matthew Grove, Tycho: A Wide-area

Messaging Framework with an Integrated Virtual
Registry, Special Issue on Grid Technology of the
International Journal of Supercomputing, (eds) George
A. Gravvanis, John P. Morrison and Geoffrey C. Fox,
Springer, Volume 42, pp 83-106, March 23, 2007,
ISSN: 1573-0484

[4] Roy Thomas Fielding, Architectural Styles and the
Design of Network-based Software Architectures,
Ph.D. Thesis, University of California, Irvine, Irvine,
California, 2000

[5] GridFTP,
http://www.globus.org/grid_software/data/gridftp.php

[6] NaradaBrokering, http://www.naradabrokering.org/
[7] Globus, http://globus.org
[8] IRC, http://en.wikipedia.org/wiki/IRC
[9] R-GMA, http://www.r-gma.org/
[10] Jini, http://www.jini.org/
[11] Apache AXIS, http://ws.apache.org/axis/
[12] VERA, http://vera.rdg.ac.uk
[13] Vindolanda, http://vindolanda.csad.ox.ac.uk/
[14] XDB, http://xdb.vera.rdg.ac.uk/
[15] Necho, http://acet.rdg.ac.uk/projects/necho/

[16] Sloan Digital Sky Survey, http://www.sdss.org/
[17] WGET, http://www.gnu.org/software/wget/
[18] Azureus, http://azureus.sourceforge.net/
[19] VOTechBroker, https://portals.rdg.ac.uk/votb
[20] M.A. Baker and G. Smith, GridRM: An Extensible

Resource Monitoring System, the proceedings of IEEE
International Conference on Cluster Computing
(Cluster 2003), Hong Kong, IEEE Computer Society
Press, pp 207-215, 2003, ISBN 0-7695-2066-9.

[21] Self-Organizing ICT Resource Management
(SORMA), http://www.iw.uni-karlsruhe.de/sorma.

[22] M.A. Baker and R. Boakes, Slogger: A Profiling and
Analysis System based on Semantic Web
Technologies, Special Issue of Scientific Programming
on Large-Scale Programming Tools and
Environments, (editors) Barbara Chapman and Dieter
Kranzlmuller, International Journal of Scientific
Programming, IOS Press, Vol. 16, Number 2-3, pp
183-204, 2008, ISSN 1058-9244

[23] Map Server, http://mapserver.org/
[24] JSR-000168 Portlet Specification,

http://jcp.org/aboutJava/communityprocess/review/jsr
168.

[25] Gridsphere Portal Framework,
http://www.gridsphere.org/gridsphere/gridsphere.

[26] G.M Smith, M.A. Baker and Javier Diaz Montes, A
Web 2.0 User Interface for Wide-area Resource
Monitoring, 15th Mardi Gras Conference, Baton
Rouge, Louisiana, 30 January - 2 February 2008,
ACM SIGARCH, ISBN 978-1595930-835-0.

[27] RESN, http://acet.rdg.ac.uk/projects/resn/
[28] Sun SPOT, http://www.sunspotworld.com/
[29] RDF, http://www.w3.org/RDF/
[30] SPARQL, http://www.w3.org/TR/rdf-sparql-query/
[31] GridSphere, http://www.gridsphere.org

194

